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Correlation Functions and the Goldstone 
Picture for the Hierarchical Classical Vector 
Model at Low Temperatures in Three or 
More Dimensions 
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Low-temperature properties of the one-and two-point correlation functions are 
obtained for the pure state classical vector model in a hierarchical formulation. 
We consider the Z d lattice model (d~> 3) where the single-site spin variable 

e R v has a density proportional to e -~(~ for large 2 ~< or. We obtain the 
pure state one- and two-point functions by introducing a uniform magnetic field 
which goes to zero as the volume goes to infinity. Using renormalization group 
methods, we generate a sequence of effective actions and spin variable and 
determine the spontaneous magnetization (one-point function parallel to the 
field). We confirm the Goldstone picture by showing that the truncated 
two-point function has the canonical massless decay [x-y[-ca 2~, x, y ~ Z a in 
the directions perpendicular to the field. We show a faster decay in the parallel 
direction and for large d that the decay is Ix-y[-(d+2). 

KEY WORDS: Hierarchical classical vector model; Goldstone picture; 
infrared asymptotic freedom; renormalization group method; correlation 
functions. 

1. I N T R O D U C T I O N  A N D  R E S U L T S  

In  a p r e v i o u s  paper ,  (1) he rea f te r  referred to as I, we o b t a i n e d  l o w - t e m -  

p e r a t u r e  t h e r m o d y n a m i c  p rope r t i e s  of  a h i e r a rch ica l  ve r s ion  of  the  Z a, 

d~> 3, la t t ice  c lassical  vec to r  spin m o d e l  wi th  p a r t i t i o n  g iven  by 

Z = f e x p { f l [ � 8 9  (1.1) 
:c 
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164 Schor and O'Carrol l  

where ~b= (~b 1, ~b2,..., ~b~)ER ~, h is a uniform magnetic field in the one-direc- 
tion, 21 is the lattice Laplacian, and fl is the inverse temperature. See 
refs. 2-7 for results on the model of (1.1). In I, renormalization group 
methods (see also refs. 8 and 9) were used to obtain an expression for the 
free energy and spontaneous magnetization, calculated as the thermo- 
dynamic limit of the derivative of the free energy per site with respect to the 
magnetic field at zero field. A sequence of magnetic fields, going to zero as 
the volume goes to infinity, is used to put the system in a pure state. In this 
paper we obtain low-temperature properties of the pure state one- and 
two-point correlation functions at zero magnetic field. The result for the 
one-point function follows immediately from I, using its translational 
invariance. In agreement with the Goldstone picture, (2'3) i.e., there are v -  1 
massless degrees of freedom, we show that the truncated two-point function 
perpendicular to the field decays as Ix -y[ - (d -2) ,  x, y e Za; the parallel one 
decays faster and for large d the decay is ix-y[-(d+2) .  See refs. 10-12 for 
results for other hierarchical models. 

Specifically, the model we consider is obtained from the above by 
replacing d by the hierarchical Laplacian and relaxing the fixed spin condi- 
tion, i.e., the partition function on the lattice AN= [--LN/2, LN/2]dcZ d, 
L odd, is given by (after the change of variables (b ~ fi 1/2~b) 

ZN,h, f i)= f e x p  {fi'/2h x~a(~l(X)--flx~Ax [~b(x) 2 (1.2) 

where /~ < oo and 2 ~< oo are taken to be large, and d#N(" ) is a Gaussian 
probability measure with covariance O N given by the inverse of the 
hierarchical Laplacian. We introduce the Gaussian probability measure 
d#m with covariance Gm for functions on A m = [-Lm/2, Lm/2-]ac Zu; for 
m = 0  only a single site is present and Go = (1--L-(a-2))  -1. The term G,~ 
is given by 

Gin(x, y ) = ( 1  - L  2 a)- i  L(Z-cl)[n(x,y)-t] (1.3) 

for all x, y~A,, and n(x,y)=min{n={1,2,...}: [L-"x]=[L-"y]} ,  
where, for any u~R d, [-u] is the element of Z d such that -1/2~< 
u i -  [ u ] i <  1/2. We remark that the m e a s u r e  d]~ m is determined by the 
relation 

f exp[-i(~b, J)]  dktm(fb ) = e x p [ -  {(J, GmJ)] 

via Bochner's theorem. For m ~> 1, d~m(r ) does not have a density as a 
function, but as a distribution, since G m has a nonzero null space. Further- 
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more, using the spectral representation of G m (which can be obtained 
explicitly) and restricting Gm and the measure to the orthogonal comple- 
ment of the null space, one can write the Gaussian measure with a density. 
The associated quadratic form is long range. This procedure provides a 
link between the nonlocal part of the interaction in our model and the one 
studied in ref. 11. 

The G m satisfy the recursion relation 

Gn+ I(LX + u, Ly + v)= LZ-aGn(x, y) + f,(x,  y) 

for all x, yEA~ and u, v such that -L /2<u~ ,  v~<L/2; 6,(x, y) is the 
Kronecker 3. 

We use the fundamental relation 

X E A N  X E A N  1 

where 

/ ' ( ~ b ) = f  I-I fLx+u(L-ra-2)/2~+~) e ~2/2 d~ 
u c B  (1) 

with B~01) = {u ~ Zd; - L / 2  < ui< L/2). The relation (1.4) is derived by 
differentiating the generating function exp[-�89 GnJ)] with respect to the 
J 's using the decompositions (~(Lx + u) = L -  l12~d- 2)~b,(x ) + q(x), x ~ A,_ 1, 
d~n(~ ) = d~n_ 1(0 t) d~n_ 1(.) , where @. ( t / )=  1-L~A. @(q(x)) and @(t/(x)) 
is a Gaussian probability measure with covariance 1. We adopt the conven- 
tion that the ~ integral includes the factor (2~) ~/2. We can look at 
Eq. (1.4) as giving a decomposition of an original field integral into a new 
field and fluctuation field integral (see I for more details). We define the 
renormalization group transformation (RGT) R by 

e-RW(c~)=f exp[-LaW(L-(a-2)/2(9+~)] e-~Z/Z d~ (1.5) 

A simple calculation shows that the derivative of R is given by the linear 
operator 

dR(W La~ g(L (d- 2)/2~b + 3) exp[- -LaW(L(a-2)/2(9 + 3)] e r d~ 
d W  ) g(~b) = ~ exp [ - L a W( L - (a- 2)/2(b + ~ ) ] e - 1/2r d~ 

- LaMwg(~b) (1.6) 

so that by the chain rule 

dR"(W) 
dW g((~)=L"aMm ,w'"Mwg((~) (1.7) 
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Applying Eq. (1.4) to the partition function Z~ and one-point function 
gives, letting V= (2/fl)(~b ~ - fl)2, V~ = V -  fl~/~hL and I(~b) = ~b~, 

x ~ d  N 

. . . . .  f 1-I exp[-RU-iVh(~(x)  )dt~' 
x ~ A i  

= f expE--RNV,(~)] d#o (1.8) 

(~i(O))(N)=--ZNlfi -t/'2 Oi(O) [-1 exp[-Vh(dp(x))] dlt N 
X~AN 

=ZNlfi  -1/2 Mvh((bi(O)) H exp[-RVh(O(x))]d~N_~ 
X ~ A N - I  

. . . . .  Z;~f1-1/2 f MR~-~vh"" Mv~(~) e x p [ -  RNvh(~)] d#o 

(1.9) 

For the two-point function let x = L"z + L ~- ~u~ + ... + u, and y = L~z + 
L " - I v ~ + . . . + v , ,  z~A~, u~#vl ,  where n=n(x,y)>~l defines the 
hierarchy containing the points x and y, u ,  vj~B~J ). We consider scaled 
correlation functions due to the change of variables in the original partition 
function of Eq. (1.1). Using Eq. (l.4) in the two-point function gives 

(~i(x) O,(y)) ~ 

=-ZTv'fl-tf  Oi(x)G(Y) l-[ expE-V(~b(w))] dlzu 
W~AN 

f Mvh[qJ~(L"-lz + L ' -  2ul + -" + u,,_l)] 

xMv~[(bi(L"-~z + L"-2vt + ... + v,-1)] 

x [-I expE-RVh(fb(w))]dl~N-1 
w ~ A N - t  

. . . . .  Z j  v l f l - t  j MR,_~vh[MR,_2vh... Mvh(~i(z))] 2 

x [I  exp[-a"Vh(4(w))d~. 
W~AN 

. . . . .  Z~lf1-1 f MR,~ 'v~"" 

x MR.-~vh[MR.-2vh... Mvh(q~i)] 2 e x p [ -  RXVh(~b)] d#o (1.1o) 
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From Eqs. (1.9) and (1.10) we see that we need to control RkVh and com- 
positions of M operators with a magnetic field. In I we showed that there 
is a simple relation between R"Vh and R'V,  namely, the linear shift formula 

where 

R"( V -  pIk) = T ,,o~ R ' V - -  L'~/2(d+ 2)plk 

-- � 8 9  2 (1.11) 

[L2n 1~ 
a', = LdL ('/2)(d 2) \-ff~--1-1/I' Ik( (J ) = ~k 

ek is the unit vector in the k direction and T_b, b ~ R  v, the translation 
operator T bg(O)=g(O+b) .  Using Eqs.(1.7) and (1.11), we obtain, 

- - r i d  t letting e I = e and an = L an, 

m m - l v h " "  M v J ( O )  = L -"d d 
e = 0  

nd d I 
--L ~ T - ~  ~=o 

= T-a;~'/zheMR. , v""  Mvf(q6) (1.12) 

and 

,4 
MR,- Iv . . .  Mvlk(O ) = L-ha @ Rn(V + elk) (0) 

0 

= L (n/Z)(a-z)~)k--an6GkRnV(~)) (1.13) 

We use Eqs. (1.12) and (1.13) in Eqs. (1.9) and (1.10) to obtain, after 
making the change of variables ~b ~ r + a'ufll/2he, 

6hRNV 3 

x exp[ - gu(~, fl, h)] &b t 

x { f e x p [ - U u ( ~ , f l ,  h)]ddp} 1 (1.14) 
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O~(x) O,(y)) (~) 
( d R  N-  

=fl 1L-(N-n)d f ~ k T ( R n g  ) 

{I o." 'v(o)~ x L-E(n- ' ) /21(d-z)Oi--a.  1 - ~  j 

X i -[("-l)/2](d 2)Oi--an_ 1 ~ J J /  

• expE-vN(O, 8, h)l dO/I expE-V (O, 8, h)l dO 

where, setting r N -  (L d -  1)(L 2 -  l) 1 - L - 2 N ( L d - - L 2 ) ( L 2 -  1) - t ,  

(1.15) 

UN(O, fl, h) ~- RNv(o)  -- FNL(N/2)(d+2)fll/2hO1 -]- �89 - -  L 2-d) 0 2 (1.16) 

Through the use of Eqs. (1.12) and (1.13), we see that we can consider 
effective spin variables with zero magnetic field, but with a linearly shifted 
effective action. From the results of I, recall that 

R~VV= dN + 4ZN(101 --/~2)2 + WN(IOI -- ~ 2 )  = dN + V (N) 

for 110b-fl~2[ <fl~v, 0<c~ and small, where WN(fl) is analytic and 
IWN(~)I < k/~r The 2N converges to 2*, the fixed point of the function 
f(2)  = L22/(1 + 8La2), i.e., to 2* = (L 2 -  1)/8L d. Later we specify the rate of 
convergence more precisely. Also we see that the effective spin variable is 
modified from its canonical value L -("/2)(d- 2) 0 by a term proportional to 
the derivative of the nth effective action. 

We now consider the one-point function. In (1.14) an integration by 
parts of the second term gives 

(0k(0))(N) = - -hL 2N + d(1 - L -  2N)( L 2 - 1) -1 r N(~ lk + fl--1/2r N 

x L (U/2)(a 2) S Ok exp[-- UN(O) ] dO 
exp[ - UN(0)] dO 

8 
= ~s Eft -1 L -Nd In ZN(h)'] (1.17) 

which is precisely the finite-volume magnetization per unit site calculated 
in I. Actually, this follows from translation invariance of the finite-volume 
one-point function even though the covariance GN is not translation 
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invariant. Thus, using the results of I, we have, letting, as in I, the magnetic 
field depend on the volume, 

hN = r u l ( 1  _ L 2 d) L--(NI2)(d+ 2)(flN/fl)l/2 

Theorem 1. 

(4~(0)> = lim (4k(O)>(N)=(~kl[~ -I/2 lim L -(N/2)(a 2)R1/2 k'N N ~  N ~ c o  

A more intuitive way to understand the above result is to go back to 
Eq. (1.14). For  the special sequence {hu} , UN(4, fl, hu) has a minimum at 

__ /:~ 1/2  
41 - -  t - 'N  , 4 •  ~ (42  ..... 4v) = 0 ,  and near the minimum 

UN~dN+l[8)~N+(l--L2-d)](Ol--fiN1/2)2at _ � 8 9  2 d) 4• 

: /? 1/2 Thus, the exponential in (1.14) is concentrated around 4 (41=r-N,  
4• = 0 )  and since c~RNv/o4k is zero there, only the first term survives, 
giving ~3klL -(N/2)(d 2)fl-1/2fl~2. This argument can be made rigorous 
using Lemma 5.1 of I, thus giving a direct proof of Theorem 1. 

We now turn to the two-point function. Note that 
(4i(X) 4j(Y))(N)=o for i:/:j. We do not know of a formula for the 
integrand of the numerator of Eq. (1.15), so to handle the composition 
MRN-lv''" Mm-lv, we derive another representation from (1.15) given by, 
letting c~ i - c~/~4i, 

(r 

=fl- l  f {L (N/2)(a--2)I2i + 2aNL--(N/2)(a 2)Ii~iv(N) 

N--1 
4a2E((~iV(N))2--(~2iV(N)]-I- E L j(d-- 2) 

j=n 1 
N--n 1 ( n+JN_ ) 

E <"+j' 
j=O 1 

} /f + a,2 iL-a MR, v r e Uudq) e UNd 4 (1.18) 
l= 1 

From (1.18) we see that to understand the two-point function we need to 
control products of M's applied to the second derivative of the action. 
Before stating the theorem on the long-range behavior of the two-point 
function we give an intuitive explanation: ( 1 ) i =  1. The first term con- 
tributes (41(0) )  2 and the next three terms give a zero contribution. The 
dominant contribution comes from the last two terms replacing c~ V (") by 
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82n. The term zN__-,~_~ L -j(a-2~ gives Ix--yl -ld-2) falloff of the inverse 
hierarchical Laplacian, but cancellations occur with the remaining terms to 
give for large d a Ix-yl-(a+2) decay for the truncated function. (2) i #  1. 
The first term contributes zero and the next three terms give a zero con- 
tribution also. The dominant contribution from the last two terms comes 
from replacing c32V (") by zero. The term ZN_~a~L -j(a-2~ gives the 
dominant contribution, which is the hierarchical Laplacian decay, i.e., 

I x -  yl (d- 2~ 
We have the following result. 

i.e., 
T h e o r e m  2. The thermodynamic limit of <Oi(x) Oj(y)> (N) exists, 

@,(x)  ~b,(y)> = lim @, (x )  06e(y)> (N) 
N~oz~ 

and satisfies 

3 1 
lim L (~-~)(d 2)<~bi(x)~bi(y)> I _ L - ( a  2), i=2,3, . . . ,v  (1.19) 

lim L ("-l)(d 2+6)(<01(X)(91(y)>-- < ~ 1 ( 0 ) ) 2 ) = 0  (1.20) 
n~oo 

where 6 = 1/2 - 3c~ > 0. For large d, 

<~,(x) ~,(y) > - <~,(0) >~ =/3-1 
L a L - " ( a + 2 ~ ( 1 )  2 
1 _ L_(a+2) 2"2 ~+Roo 

+ O(L n(d+2+e)) 

where e>0 ,  R o ~ - l i m n ~  [ R , - L 2 n ( 2 2 ~ - 2  * ~ ) - ( 2  1 - 2 "  1)], and 
I Roo I < c/3 ~ -  1/2. 

Remarks. 1. To obtain the expected Ix-y l  (d+2) decay for all 
d>~ 3 in Eq. (1.20), we would need more refined estimates of M operators 
applied to the second derivative of the effective potential. These estimates 
can be obtained from higher-order perturbation calculations. 

2. Second-order perturbation theory shows that the dominant 
contribution to R~ is -c(v-1)//3, where c>0 .  

3. The parallel truncated two-point function of the model with 
V= 42(~b,-/3) 2 can be calculated exactly and the parallel decay is given by 
/3 1LaL-n(a+2~(1 _L-(d+2)) I 2,2/22, which is to be compared with the 
large-d result of Theorem 2. 
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We now describe the organization of this paper. In Section 2 we derive 
the representation of Eq. (1.18) and as an interesting byproduct we obtain 
a quadratic upper bound on V (~1, n ~> 1. In Section 3 we obtain estimates 
on the terms of Eq. (1.18) and show the existence of the thermodynamic 
limit. Also, a convenient representation for the thermodynamic limit of the 
two-point function is obtained. Using the estimates and representation of 
Section 3, we obtain the decay rate of the two-point function in Section 4. 
We make some concluding remarks in Section 5. 

2. R E P R E S E N T A T I O N  FOR T H E  T W O - P O I N T  F U N C T I O N  

In this section we derive the representation Eq. (1.18) for the 
two-point function starting from Eq. (1.10). A differential inequality is 
obtained which gives an upper bound for V(n)(~b), n ~> 1. 

Set, writing Mmv = Mvt,i =- Mn, ~/O~i ~- Oi, 

F~n 1)= - a n _ l L  ~1/2)(n 1 ) ( d - Z ) i i _ a  n l OiV(n-l) 

G(~,m)=--M, l + m . . . M , M , _ l ( r ~ "  2))2,  m>~O 

so that 

G(O!=L-(n-1)(a-2)M, ' I 2 -(1/2)(n- i i + 2 a n  1L l)(d 2 ) M  n l l i~iv(n  1) 
- - n , t  - -  

2 1M,_~(OiV(~ 1))2 + a n _ 

In order to calculate the above, we use Theorem 3. Let n/> 1; then: 

(a) M,  , I 2 = I 2 = L  -(a 2 ) I~-2 I~ iV(" )  
+ L(d-2)l-(~?, V(n)) 2 -  cg~V(")] + 1 

(b) M,, IIiO~V (" ' ) = L  aIr 2[(0~V("))2-c~V (")] 

(c) M,,_I[La(c~V("-~))2-cg~V("-~)]=L-2[(~V("))2-c~V(")]  

Proof. (a) After making the change of variables ~ ' = L  -ca 2)/2~ + 

in Eq. (1.6), we find, by a direct computation, that 

~ i M n _ i f = L - ( l / 2 ) ( a - 2 ) ( M , , _ l l i f _  L (1/2)(a 2)iiM~ l f )  

-- L - ( 1 / 2 ) ( a - z ) [ ( m , - l f ) ( M , - l l i ) -  L-(1/Z)(d-Z)liMn l f ]  

= L  (z/2)(a 2)[M,, I l J - ( M , , _ I l g ) ( M , ,  l f ) ]  (2.1) 

Setting f = L  in Eq. (2.1) and using (1.13), we get 

M , _  ~I~ = L (a-2)I~ - 2I~ ~ V (~3 + L(a-~l[(~?~ V(")) ~ -- ~ V  (")] + 1 
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(b) S e t t i n g f = 0 ~ V  (~-~)in Eq. (2.1), we get 

M~ ~I~OgV (~ 1 ) = M n _ l l i ( M n _ l O i v ( n - 1 ) ) + L ( d - 2 ) / 2 0 i M n _ 1 0 i v ( n  t) 

= (L -(d 2)/2Ii--L(d-2)/2 0i V(n)) L ( d + 2 ) / 2  Oiv(n) 

+ L(a 2) /2  OiL-(d+2)/2 0i v(n) 

= L-dI~ 0~ V ~") - L -  2 [(0, V(")) 2 - 0 2 V ~") ] 

(c) Differentiating 

exp[  - V("~(r = c ._1 f e x p [ -  LdV ~"- 1)(~) _ �89 _ L- (d  2)/2~b)2 ] d~ 

twice gives 

0 a " 1 ) 
0 2 e x p [ - g ( ~ ) ( ~ b ) ] _ - L  (~'-~/2c._1f ~ . 2 e x p [ - L  V t" ( { ) ]}  

[ '  ] x exp - ~ ( ~ - L  (d-2)/2~b)2 d{ 

and as 

02e v~o~= e -  v~~ V ~ )  2 - e -  ~~ 0~v  ~n~ 

we have 

(OiV(nl)2_O2V(n)=L-(a-2)M~_l[L2d(OiV(~ ~))2_Ld O2V (n ~] 

Using Theorem 3 in G(~ and the relation tl, l 

an+l = L - ( d + 2 ) / 2 a n _ L  (n-1)(d-2)/2 

we arrive at 

G(~ = L-~(d-  2)12 + 2a~L (n/2)(d- 2)ii 0~ V (~) + a2~(0i V(~)) 2 

+ L-(~  l)(d 2 )_an20~V( , , )+a~_1L-dM, ,_102v(n -1 )  

F rom this result we are led to the following. 

T h e o r e m  4. Ifm/>O, 

G(.~ ) = L -(n+m)(d 2)12 + 2a.+.~,L (n+m)(d--2)/2I i 0 i V (n+m) 

2 (n+m) 2 
q- an+m(OiV ) 

(2.2) 
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n+m 1 
+ y L 

j=n--1 
m l ( n + J 

- - ( 1 - L  e) Z a .+j  1~ M, 
j=O l=n+n+l  

+an i L - a  Mt 0~V(n 1) 
\ l = n + m  1 

where the Zj=o term is to be omitted for m = 0. 

Proof. The result is true for m = 0. Assume it is true for m, m ~> 0; 
then, using Eq. (2.2) and Theorem 3, we have 

G(m+l)__ A// (~. (m) 
n,i -- - '-n+rn~n,i  

= [ L  (n+m-l)(d 2 ) i~+2an+m+l  L (n+m+l)(d 2)/2 

X I i (n+m+l) 2 ~i V + a n + m + 1 ( ~ i v ( n + m + l ) ) 2 ] +  L (n+m)(d 2) 

__ an+m+12 ~32v(n+m+l) + an +2 m L - a M n + m O Z V ( n + m )  

n+m--1 m--1 
+ 2 L - J ( d  2) 2 ~2v(n+m) (1 L - a )  ~ 2 - - a n + m M n +  m -- __ an+ j 

j=n--1 j=O 

X ,,,l=~n+mMl ~2v(n  + a  n 1 t d l = ~ n + m M l  O2v(n 1) 

= [L 0,+.,,+ 1)~a-2)i~ + 2an+m+ 1L-(n+m+ 1)~d-2)/21i ~i v(n+m+ i) 

2 + ~(~ VO,+, , ,+, )2]  + an+rn 
n+m 

,+ ~ L-j(d-2)_a.+m+12 O~VO,+, , ,+I )_(I_L-a)  
j=n--1 

a2+j  ,l=~n+m j=o  

• ~2v(n+J)+a2_lL-d Mz O~V(n 1) | 
l= m 

Finally, we obtain the upper bound for V (n) given by the following 
result. 

T h e o r e m  5. F o r n / > l  and all 06~R ~, 

L-ca 2) 
v(n)((~) ~ T ( 1 ~ ] -  fll/2)2 
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ProoL Setting f = I  in Eq. (2.1) for n~>l and using (M. tli)2~ 
M . _  1I 2, by Schwarz's inequality, we get 

O~c~iM ~ ll i=L -(a 2)/2__L(d-2)/Z ~2v(n) 

or c~V(")<~L -(a-2). Since V(")(~b) = V(")(l~b] ) and (dPV(n)/d~r p) 
( a -  ]~b]- fl~/2)= 0, for p = 0, 1 the result follows. 

3. T W O - P O I N T  F U N C T I O N  A N D  T H E R M O D Y N A M I C  L IMIT  

In this section, we establish a convenient representation for functions 
of the form (I~7 ,+mMt) O~ V(n) appearing in Theorem4, which will 
ensure the control of the integral (1.18); the infinite-volume two-point 
function will then be written as a superposition of multiscale contributions 
analogous to the expansion of the free energy obtained in I. 

The integrals in (1.18) will be calculated splitting the region of integra- 
tion, as in I, into "small fields" (perturbative region) 

i c~ I c~ 

{~: I ~ , - / ~ ' 1  < a/~,,, L~I = ( ~ : +  "" + ~ ' v / '  < ~ / ~ , , } . v .  

and the complementary "large-fields" region; 0 < e < 1 /6 (d -2 )  is a fixed 
number. The latter contribution can be handled with a crude global upper 
bound on (I-I'/-,+m Mr) O~V ("), given in Theorem 6 below. The main con- 
tribution comes from the perturbative region, where a detailed representa- 
tion, given in Theorem 7, is needed. 

Let n>~ 1 and m>~ -1 .  When m =  -1 ,  (I]~'=,-1 Mr) ~V~"~=-~?~V ("~. 
The constants appearing in the theorems below depend only on L and c~. 
We assume the initial/~ to be large (depending on L and c~) and the initial 
~. > �89 

T h e o r e m  6. The function 
n 

e ' ' '+l"'  (,_H+m ", ) 
is entire in ~b and bounded by d0fl~,+m[eXp L -(a 2)(Im ~b)2], for a suitable 
constant do. For real vectors, 

e-VI"+m+')(~k) (l=O+m Ml) 632v(n)(O) <~ dofl.+m 

To obtain the small-fields representation for (l--[7-.+m mz) ~?iOjV ~"~, 
we first note that since it is a second-rank tensor under rotations, it has the 
general form 

l=~n+mMi ~eojg(,O((~)=f~(l(jl)6~j+ l-fTg~)(l@l)(lOI) ( 3 . 1 )  
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T h e o r e m  7. f ~ )  and h2 ) -  f ~ )  + g~), viewed as functions of a = 
B1/2 i ]r are analytic on I~ < ~/~n+m+ 1 and have the representation 

(n) -(n) f m  ( ] r  and h~) ( l r  (a), where f ~ ) ( a = 0 ) =  
= /~t~(3~ 1/2) Also, 7~")1=0 and ~ ) ( a = 0 )  0 and I]'~')(a)l, I~)(~r)l~<., . ,+m+l.  

2(") 1 = 2 , ,  and we have ~,(") -7~)1, 8 ~(") 1-2~)1 <'bR(3c~-l/2) l m +  1 "~m+ "~ "~P'n+m+ 1 " 
Before we prove Theorems 6 and 7, we establish the final representa- 

tion for the thermodynamic limit of the two-point function which is used 
to analyze the decay in Section 4. 

T h e o r e m  8. The infinite-volume truncated two-point function is 
given by 

/~[ (r r  - ( r 1 6 2  

L (n l)(a 2) 
= I _ L  (a 2) ( 1 - L  -d ) 

>( ~ 2 3~z- 1/2 an+j[8}~n+j(~il + O(t~n+ j )] 
j=O 

+ L-aan _2 1 [ 81~n-1(~ i1-~ 0 ( ~ 3 ~ - 1 1 / 2 )  ] 

where n = n(x, y) defines the hierarchy containing x, y e Z d. 

ProoL Rewrite Eq. (1.18) as 

( q)i(x) r > (N) = N(n N) 
D (N) 

where 

N(nN)= f {L--NCd--2)r i + 2aNL N(d 2)/20iOiv(N ) 

+ a2u[(Si v(N)) 2 __ (~2v(N) ] 
N 1 

+ ~ L - J ( d - 2 ) - ( 1 - L - a )  
j ~ n - - 1  

N- -n- -1  / n + j  \ 

X an+ j 
j=O l= 1 

( n--mill-- ) t -a  2 Mt (~2vr e CSdr + L a ._  1 
l= 1 

D (N) = f e -  ~]N d~) 

822/64/1-2-12 
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where 

UN(O) V(N)(O)_jl(i_L2 d)E(01 1/2 2 2 ---- --fiN ) -t-O• 'hN) 

The particularly simple form of UN is a consequence of the judicious choice 
of the sequence h N of magnetic fields in I. To calculate D (N), w e  split the 
integral according to the decomposition 1 = Zo + Zc, where 

ZO(~):;1 if [ 0 , - - J ~ 2 [ ~ l f l N  and [0j_]<�88 

~' "[0 otherwise 

Since V (u) >~ 0, (1) we have 

Using the "small-field" representation 

v(N)(O)=42N(IO I 1/2 2 --flu ) +WN(10/--fl~2) 

on I I01-  fl~2L < fiN, with WN analytic and vanishing together with the first 
two derivatives at zero and bounded by kfl~ ~ 1/2) there, we can write 
~JN(O) = VN + O(fl~ ~- 1/2)), where 

VN(O)~--IE8,~N+(1--L 2 d)](01--fl~2)2+�89177 

valid if Zo(0) = 1, with the O(.)  term uniform in this region. Thus, 

D (o u) = f Zo e-ON dO = f exp[--  VN(0)] dO + O(fl~ ~ 1/2) 

and we conclude that 

l i m  D (N)= - D (~176 f exp{ - �89 + (1 - L2-d)]  02 - -  �89 - L 2 - d )  0 2 }  dO 
n --~ oo 

We analyze each term of N(n N) in a similar way. Thus, we find 

f OZzc exp( - dO ~< x (f16il + const) Uu) const 

and 

f ~zoe -~ud~= [ l  +O(fl~ ~-1/2)] f ~Zo e VNd~ 
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Hence 

f ~b~Zo e x p ( -  UN) dq~ 

= [ 1  + O(fi3N~- '/2) ] { f c~2 exp(-- VN) &b 

=[fexp(_vu)  d~)][l+O(fl3~ 1/2)] 

• [~Na,1 + o(1)]  

It follows that 

lim f L N ( d - - 2 ) ( 9 2 e  ON&b=6~ID(~) lim L -N(d 2 ) f i N  
N + oo N--+ oo 

= D(~176162 >2 

= D (~ (x) > (qi,(y) > 

Next consider 

with 

We have 

UN(~b) = 21-( 1 -- L2 d) E (r --fiN1/2 ) 2 .~_ ~• ]2  

f ~i~i e ~ V (N)  gJ u 

= e (bi(~iu.) e--~N Oq~ 

~< const + 6il fll/2, const 

Since aN~ L -N(a 2)/2, we conclude that 

lim aN L-N(d 2)/2 f oic'~iV(N) e-&V &b=O 
N ~ o~ 
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Now, consider 

which implies 

Schor and O'Carroll  

f [ ( O i v ( N ) ) 2 - - O ~ V  (N)  ] e v(N)--UN d O 

= I (~e -  vlul) e .u dO 

= fe-VINl~e U~'dO 

f E(0iUN)2 -- 82UN] e- v,N,_ ~N dO 

~< const 

2; l i m a  N [(OiV(N))2-~2V (N) ] e Ou dr 
tl ~ oo 

Next. using Theorem 6. we have 
n+j Z,. 

f . ,=  uI~ 1 Mr)0~ V(n +J)[exp(-  U N ) ]  &b 

~<constxfl~v_l_._jex p - ~--~(1-L 2 a) fl2u~ 

Also. since limb[ /3~2[ i - -  < 2fiN if )~o(~b) = 1. we have. from Theorem 7. 

( n + j  M,)O~V(n+j)e__ d( ~ f.,=~u_ 1 V~Zo 

: f 

"~-1~12 N - - l - - n - - j , l ~ " l )  e--VNZodO+O(flN ~-1/2) 

( n + j )  f d(~ ~- [Q .~ (n +j)  . , ( n + j )  ] N - - l - - n - - j  e vN = ~,Ut~N-- 1 - -n  - - j  - -  I N - -  1 - -n  - - j r  

f O~i ,~-,/2) x i-~-~ 

Since ~2/[OI 2= a,1 + 0 ( 3  2~- 1) if Zo(O)= l, the above expression is equal to 

[o~(~+s) j6 .  +~,{~+J) tl_6o.)] f e ~d~+O(fl3N~-X/2) O*ILN 1 -- -- I N - -  ! n - - j ' ,  
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Now, Theorem 7 implies that lim . . . .  7(m')=?~ ) and 
exists and 7~)= O(fl 3~- m) and 2~)=  2, + O(f13, ~- ~/2). 

Thus, we conclude that 

N~oo ( n+j M,) C/Nd~ lim f . t=  NI~_ ~ ~iv2(n+J) e - 

vQz(.+j)x + ~ + J ) ( l  6 i i ) ]D(m) : LoL~ Uil 

and in the same way, 

Since 

lim MI O~V('-I) e Dud() 
N~co I=. 1 

= [8~x  ~ -  i)6il + ~ - - 1 ) ( 1  -- 6il )'] D (~) 
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l i m ~  ~ ~ 2 ~  _ 

,,+s Ml)(?~V(,+S)e_CZud 0 O(1 as oo N--+ 

independently of j, the results established above together with the 
dominated convergence theorem complete the proof of Theorem 8. 

Proof of Theorem 6. We first verify the assertion for m = -1 .  
From (2.1) and (1.13) we have the following identity valid if n/> 1: 

Oi#jV(')= L (d-2)[6ij-- Mn_ l l i l j+  (M. l l i )(mn_lIj)  ] 

In I, we have shown that 

e x p [ -  V(')(~b)] = c. 1 f e x p [ - L a V  (" 1)(4 ) - 1(4-- L-(a-z)/2~,b)2] d4 

with 

c, 1 = ( 1 + 8 2 , _ 1 L a )  ~/2[l+O(fl 3~ i/2)] 

[recall that d4 includes a (2n)-v/2 factor], so that clearly e 2v(,) O/?jV(,) is 
an entire function. To estimate it, we consider the case n =  1 separately 
from n > 1. Using the fact that 

V(~ = ~ (4 2 - 3) 2 > )o(l~l - 3'/2) 2 
# 



180 Schor and O'Carroll 

we have (dl, d2 are constants depending on L and v) 

]e vii)Moil] 
< Coda exp[�89 2)(i m ~)2_  �89 2)(R e O ) 2 ~ L d f l ]  

fo x r V e x p [ - � 8 9 1 6 3  r2+(22Laf11/2+L (a-2)/2 IRe e l ) r ]  dr 

Proceeding as in the proof of the global upper bound in I, we get 

le vl')Molik 

Co d2 - (d- 2)/2 <~(l+22La)1/2(fll/2+ L IRer v 

[~ 2La __L(d 2)/2fl 1/2)2] xexp L ( d - 2 ) ( I m ~ )  2 l + 2 2 L a ( ] R e ~ ]  

~ 1 ~ , _  _ Since ,~ ~- ~,~ - (L 2 1 )/16L d, we get 

I[exp(-- V(1))] MoL] <~ d3fl ~/2 exP[�89 ~a 2)(i m r 

Similarly, 

] [ e x p ( -  V~I~)] Mold f l  <~ d4fl (~+ w2 exp[�89 ~a 2)(i m r 

Using also the fact that 

[exp(-  V~ ~<exp[ -2( ]Re@]- f l~)2+ �89  (a 2)(i mr  

we finally get 

i[exp(_2V(1))] G~jv(~) I <~ dofiV exp[L  (a 2)( imq~)2]  

If n >  1, we use V (" 1)(~)>2(1~1-131,,~) 2 and 2 ._ t  ~<3/. established in I. 
The calculations are essentially the same as in the n = 1 case and we again 
get 

f [exp( - 2V(~))] c~gj V(') I ~< dofl; _ ~ e x p [ L - ( a -  2)(i m r 

Now, assume the assertion holds if m/> -1 ;  then which shows that 

[exp(--2g(~+m+2))] Q= hn+m+l MI) Oic3jr(n) 

= [ e x p ( -  V("+m+2))] C.+m+l  

x e x p [ - L a V  ('+m+ ~)({) - �89 - L -(a 2)/2r < 
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which shows that the left-hand side above is entire. Also, from the inductive 
bound, 

I ( i~m ) 1 eL-(a 2'('rn ~)2 e-2V("+m+ 21 Ml 8iSjV (n) <~dofi~+mc~+m+ 
I = n  + I  

v and c, + m + 1 ~ 2 ( 1  + 242L ~)1/2 ~< 6L. Using the fact that /~. + m 

2L-V(d z)~v n+m+l, we see that the right-hand side is bounded by 
do~+,,z+le L (d-2)(Im~)2 and completes the proof of the theorem in the 
complex case. If q~ is real, we have 

]82V(,,)]=L-(e 2) j l + ( M n _ , i , ) 2 _ M n _ ~ i  2]<~L (a-2)( l+2Mn ,I~) 

from which we get re v(.~ 8~V(~) I ~< d/3~\+11)/2 <do/~]_l.  The induction in m 
now proceeds as before. | 

Proof of Theorem 7. We first verify the assertion when m = - 1 .  
From I, we know that "- 

g(~)(q~)--4z~o'2+w~(o -) on I(r]=-l]r 

with w, analytic and vanishing together with the first two derivatives at 
zero, and bounded by kfl3, ~- 1/2. We use the notation I~1 = ( ~  + .-. + ~)a/~ 
even for complex ~b, Pq~l is analytic in a suitable region. We have 

l dV~ 1 dV (~)'] 
8, v(')(~)-i~ 1 8 ,  d~r I(Pl \ act I~1 da ] 

showing that 

1 ( dwo , 
f~](lq)l)=a+Bl/~ 82,r dcr] h(']([r = 82~ -t d2w"dff 2 

Thus, 7(~{=0 and2(_~{ 2~. If we restrict [al 1 = < 5/~, we have by a Cauchy 
estimate 

2 
I f~](l@l )l ~</~/--5 (122H~ + 4kfl~ 2~'- 1/2)) ~ kH~3~ 1/2) 

(we take without loss of generality k 1> 1). Similarly, 

l~(~{(t~bl)~< 16kfl~ 1/2) <kfl(n3~ 1/2) 

Now, assume the assertion true for m ~> - 1  and compute. Thus, 

f(~) l('~b')= ( f i  Mz) O2V(~)('@'~l) m +  
\ l = n + m + l  

m + l t  

\ l = n + m +  l 
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We have 

f ( • )  1(1~1) m+ 

) = M ,  0~ V(")(~) 
t=n +1 

x exp[  - - L d V  ("+m+ 1)(~) _ �89 _ L - m - 2 ) 1 2  le)l 01)2] d~} 

x e x p [ _ _ L a V ( n + m +  1)(~) __ �89 - L -~d-2)/2 I~l ~1) 2] d~ (3.2) 

The denominator  is propor t ional  to e x p [ -  V(n+m+Z)(~b)] and is non- 

R ' 2  = �9 I@l - -  r ' n + m + l  zero on ItOl-,-.+m+21 <Bn+,~+2 Letting a ' =  -- L(d-  2)1217112 and 
using the fact that en+m+2Rl/2 ----~l(d-2)/2Rl/2pn+m+ 1 + ~\P'n+m+/')(/'~2~-- 1/21, ~ established in 
I, it follows that f ~ ) i s  analytic on l a ' [ < � 8 9  Using 
Theorem 6, we make a complex shift in (3.2), ~ ~ r + L  (d-2)/2 I~1 ~1, and 
write ~ = uO, + t, with t .  G = 0. Next,  define 

/71/2 1) On -t- t ']  i (n+m+ 1)[(U n t- L -  (d- 2)/2o '' -t- r'n+m+ 

= B 1/2 v (n+m+ 1) [(/.,/_~_ L - ( a - 2 ) I 2 a ,  q_ t"n+m+ 1) C1 .3~ t ]  

-- 42.+m + l(U + L - ( d -  2)/20")2 

and expand the resulting quadrat ic  form in u around the point  where its 
first derivative vanishes. Finally, making a second complex shift 

1,l----~bl 
8~n + m + 1L(a+ 2)/2 o" 

1 + 8 2 , , + m + l L  a 

we arrive at 

x exp[  - L a V ( n + m + m ) ( r )  - �89 + 82n+m + 1Ld) U 2 -- !t212 du d t }  

X e x p [ - L d V ( n + m + l ) ( r ) - � 8 9 1 8 9  

N 
D (3.3) 
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where 

r= "l +82~+~+lLa+U+fl~+m+1 Ol +t 

and the t integration in (3.3) is over the (v-1)-dimensional space 
orthogonal to the ~1 direction. 

We analyze (3.3) in a way similar to the construction in I. The region 
of small and large fluctuation fields is specified by the characteristic 
function 

Zo(U, t)= { ifotherwiselUl, l t l<L  (d-1/3~/2f12+~+ ~ 

and we write N =  No + N~ and D = Do + D~, corresponding to the decom- 
position 1 = Xo + Z~. From the global upper bound of Theorem 6, 

IN~I = f 

X 

n 

exp - L d V . + m + , ( r ) + 4 2 . + m + , L  a u +  1 +-82-n-+-~-f-l-lLdJ 

1 1 dt 2(l+82n+~+lLd) u2 1 -- - --~ t 2 X,.(U, t) du 

F (, 
~< 

1 ( 1 +82.+m+1La/L-(d-2)/2tT' ~2 + ~L2(Im r)2+4Z.+m+~LaRe u+ 

- 1-(l+82~+m+~Ld) u2--~t2] 

Now 

(3.4) 

1 2 ( L-~d 2~/2 a, )2 
~L (Imr)2+42,,+m+lLdRe U+l+82n+m+lLa j  -4Z"+m+ILdu2 

1 8•n + m + 1L(d+ 2)/2 

<~L4-d]a']2+ l+82n+m+lL a uRez  

1 <~L 4-a [a'l 2 +~  ( H2~- t 2) 

1 6(L) 2~ + ~_ (u 2 + t2) f l n+m+ l 
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where 6(L) = 1L4 - a(2 - L a- 2)2c~. Hence, if l ul or [tl ~ (126)1/2 fl~ + m + l, the 
exponent in (3.4) is bounded above by - �88  t2). 

Now, suppose lul and Itl<~(126)i/2fi~+m+ 1, but still lu] or Itl~> 
L (cl-1/3)/2fl~+m+l. Then 

L-(a  2)/2 "~l 
]Rer[ t~1/2 a Re0-' /  + t~-1/2 O~/~3~-1 1) 

- - ~ ' n + m + l  = U+l+8)~.+m+lL f2 r'n+m+lt2q-v~t'n+m+ 

which implies, after some algebra, that 

--Ld(1 - 2 L  -d) 2(IRe r ] - t~  1/2 )2+ 1 ~n+m+l ~(Imr)2 +42n+m+l La 

( z-(d-2)~20-, ~2 d2 
x R e _ U + ( l + 8 2 . + m + l L a ) 2  j - 4 2 ~ + m + l L  u 

[ 4 ~ n + m +  1 - - ( 1  - - 2 L  d ) ~ ]  L 2 
(l+8)C.+m+lLa)2 ( Re 0-')2 

q- (L 2 a 8,~n+m + 1) L2 (Im 0-') 2 
2 (1+  82n+m+lLd) 2 

2142~+m+l- - (1- -2L d ) 2 ] L  ~d+2~/2 
+ (1 + 82n+m+tL a) u(Re 0-') 

/')/'R3~-- 1/2 ] - La(1 - 2L-a)2u2 + v~e . +m + 1J 

42.+m+1 [ - 4 2 . + m + l - - ( 1 - - 2 L - a ) 2 ] L  2 
~< (Re 0-,)2 

(1 - 2La)2 (1 +82n+m+1Ld) 2 

+ (L 2 - a -  8/~n +m + 1) L2 
~vkP'n+m+l] 2(1 + 82n+m+1La) 2 (Ira ~ , ) 2 .  c~tt~3~-1/2 (3.5) 

Using �89 if n~>l, the coefficient of (Rea ' )  2 in (3.5) is 
bounded by 2882L2/(1 + 42La) 2, which is smaller than 144/L d since 2* = 
(L2-1)/8L d. Likewise, the coefficient of (Ira0-') 2 is bounded by 2L -d. 
Thus, the exponent in (3.4) is bounded by 

144 1 2 L a [a,12 ..1_ g'J [/~ 3~r 1/2 --~(U q-t2)--~,t,n+m+t, 

1 
<~ 40L-a(2La-afl~+m + 1) 2~ - ~  (u 2 + t 2) 

~40(2L~a 2))2~ 
~ [  L1/3  ~] (uR+t2 )  



Hierarchical Classical Vector  Model 185 

because lul o r  Itl > L  (~ 1/3)/2/~2+m+ z. We choose cr small and L large so 
that (2L(d-2))2~/LI/3<,. 1/160. This implies that the exponent in (3:4) is 
bounded by ( -1 /4) (u2  + t 2) for all (u, t) such that Z c - 1 .  Therefore, we 
conclude that 

v 1 [ -- (d 1/3)/~2~ INcl-.~ const,  fl,+m exp[- -  ~ ~,+m+ 1] 

In an analogous way, we find [Dcl ~< const,  e x p [ - ~ L  (J-1/3)t~2~ r ' n + r n +  1 ] "  

We now turn to the calculation of 

No= f M1 02V(')(r)exp{-LaV('+m+1)(r)  
l= m 

- �89 + 8.~.+,.+ IL ~) . 2 _  it2 } Zo au dt 

Because of the Zo function, we have 

__1~1/2 ( L (d 2)/2~ 1 1~-1/2 t2_~_O(fln+m+l)3e 1 q =  [r[ V ' n + m + l  = U-I- 1 ~ ~  2 r'n+m+l 

1 Using again the fact that ~2 ~< 2,, ~< 32* if n >t 1, we see that 

L -ca-  2)/20., 9.L(d- 1/3)/2/~c~ 
U"~-I ~ ~ T L d  ~ - - -  t ~ n + m +  1, Irlt<"-3L-(a-1/3)/2fl:+m+l 

Hence, we can use the small-fields representation for V {'+~+ 1)(r) to 
get 

L -- (d- -  2)/2 \ 
R - 1/2 u q- o " )  t 2 V(n+m+1)(r)=42n+m+ll~ l +82n+m+1Ld 

4cr 1 
-[- Wn+rn+ l(~])Ac'O(f ln+m+ l) 

The first term in the right-hand side is bounded by 3L (5/2)(a-~)t~3~-1/2 Un+rn+ l" 
To estimate W.+m+ l(r/), we note since a-3W.+m+ l(a) is analytic on [a[ < 
fl~+m+l, we have by the maximum modulus theorem [W.+m+l(tl)/tl3[ <~ 
kR3~- 1/2 /R3~ i~n+m+l/k. ,n+m+l~ SO that 

IW.+m+ 1(~/)1 ~< 27kL (3/2)(a- 1/3)R3c~-1/2 
P ' n + m +  1 

These estimates, together with ft. + m + 2 < 2L(a- 2)fi,, + m + 1, easily imply 

d 1/2 (3~--  1/2) I ~'('+m+ i)(r)l <~60kL ft.+m+2 

and 
7 G k [  - 1/2R3c~ 1/2 [e_Lap( . . . . .  ) ( r )  11 ~< . . . . .  e n + m + 2  
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Let 

1 I 1 2 1 ]  dv=]exp  - ~ ( l + 8 2 n + m + ~ L  d) u - ~ t  2 Zodudt 

where I is a normalization such that ~ dv = 1, and it is easy to show that 
I is bounded below by a strictly positive L-dependent constant. Write 

No ~ dv + f " M,) I - - f ( l = ~ + m M l )  ~V(n)(r) (l=~n+m o2m(n)(r) 

• (e Lav~ . . . .  "(r)-- 1)dr (3.6) 

From the induction hypothesis, 

Mt ~?2V(n)(r)= f~)(brl)+ (rl+t~l/2 +1)2 
l= m t~n+m 

Also from the hypothesis, it follows that [f~)([r[)l, I h~ ) ( [ r I ) -82 . [~  < 
3a- 1/2 3kfl. , which implies 

f M, O~V(n)(r)(e -Ldv~ . . . .  ~'(r~-l)dv <<.300k2L-1/2fl 6~-1 
l= m 

The first term in (3.6) is written as 

2 (n) 
f f~) (q)dv+ f t2g m (]r]) dv (3.7) N ~  7~) + (q+81/2 +1) 2 

I t~nq_m 
(n) Since ? m  ( 0 ) =  0, we have by the maximum modulus theorem that 

i jT~)(~/)l ~< 6kL ca 1/3)/2/~3~p.n+m+11/'2 ~ ..,~--lg/rr 5/6/~3c~/.,n+m+21/2 

and the third integral in (3.7) is bounded by lO02L (a ~/3)/2t~2~-~ In F n + m + l "  
conclusion we can write No/I=7~+b~(a') ,  where b~(cr') is analytic on 

l/")r(d--2)R ~ 1~I'[--5/61~3c~--1/2 " the term Do/I la'l < 5~.-~ Pn+m+l] and Ib~(o")l ~ . . . . .  F n + m + 2 ,  

can be analyzed in the same way. In this way, we arrive at 

No~I+ N~/I= 7~ ) 
r<. /  t l .h l )=  + b~(~') ~m+l~ V" Do/I+D~/I 

with b2 analytic on la'l < I(2L(d 2)~+m+1)~ and Ib2(~')l ~< 
3~t.r-S/6tr ~/2 Now, letting ~ ' ~  k'n+m+2" 

_ _  / ~ 1 / 2  _ _  L(d-2)/2~1/2 1/2 
A/~n+m+ 1 - / J n + m + 2  r 'n+m+ 1 =O(~n+m+l) 
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we write a '  = l~bl - t~1/2 en+m+2+dfln+m+2=a+dfi.+m+l, with r  
~1/2 Notice  that  if the original fl is large enough, the region ]a] < n + m + l "  
1 5fin+m+2 is contained in [a'[ < �89 . . . .  2)% Writing 

(~) b A m + 1 f~)+~(lOl)=-Ym + 2( fin+m+l)+bz(ff')-b2(dfn+ ) 
(n) we define v (n) = ?~/ + b2(dfl,,+m+l) ' and fm+l (e r )  = b2(a ' )  - J m + 2  

(n) 2 a 2/2 and b2(Afl.+m+2). Then,  fm+l(a) is analytic on ] a ] < ~ . . + m +  2 
?(n)  __,y~)l~-'lq/,~/--5/6/~3~ 2/2 and 17(") 2(a)]-..< 7nzq  5/6/~3c~ 2/2 Thus,  

m + 2  ~ ' ~  / " n + m + 2  dm+ " ~ ' ~  / " n + m + 2 "  
since L is large, we see that  the induction hypothesis  for f ~ )  holds for 
m + 1 if it holds for m/> - 1 .  The verification for h~  ) is very similar and so 
we omit  it. | 

4. DECAY OF T R U N C A T E D  T W O - P O I N T  FUNCTION 

In this section we obtain  the decay rate of the perpendicular  and 
parallel t runcated two-poin t  functions, thus proving Theorem 2. F r o m  
Section 3, Theo rem 8, we have the representat ion 

fl( O,(x) ~ , ( y ) )  

L- (n  1) (d-  2) 

~ - ~ - f l ( ~ / 2 ( 0 ) ) 2 0 i l q - 1 - - L  (d-2) - ( 1 - L  d)(~il '8 

+ E .  x 2~+ ja~+ j+L2  a86i12~ la~_ 
j = o  

where 

-d  2 0(a3~-~/2) E , =  - ( 1 - L  d) an2+:[O(fl]~_11/2)] +L a, 1 h ' n - - 1  

j = 0  

F r o m  I, �89 "(d- 2)/? ~< ft. ~< 3L.(d 2)fl, and since 

( 1 - - L - 2 m ' ~  
am= Z - ( m -  2)(d 2)/2 ~-l-----L~ J ~ L (m/2)(d 2) 

we see that  
[E,] < c L  n[d--2+(d--2)fi]fl3c~ 1/2 (4.1) 

where 6 = 1 /2-3c~ > 0. Thus,  for the perpendicular  two-point  function = 
(2, 3,..., v) we see that  

1 1 
n~lim L (n-1)(d 2 ) ( ~ i ( x ) q ~ i ( y ) ) - f l  l L-(a-2) 

which is the exact decay of the hierarchical inverse Laplacian.  
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For the parallel case (i =- I) we have 

f l ( (Ol(x)  q ) l ( Y ) )  - -  ( ~ , ( 0 ) )  2) 

- I _ L _ ( J _ 2 )  ( 1 - L - a ) ' 8  2~+ja~+j+L-J .8 ,~ . ,_~a~_~ 
j=O 

~, 2 3~.--1/2 --d 2 3 ~ - -  1/2 - ( 1 - L  -~)_a.+j .o(~.+j  )+L a. 1"0(~_, ) 
j = O  

=- So(n) + S , , (  {2,~ }) + $2(2~_ ~) + E,  (4.2) 

where we define 

and 

j = 0 

S2(kn_l)=~L -a  k 2 "8 n _ l a n _ l  

From I we have lira,_ ~ 2 , - - -2*= (L 2 -  1)/SLa; thus, 

lira L("-l)~a-2~fl[ (qS,(x) f~,(y) ) - (~bl(0)) 2] 
n ~ o o  

1 
- l _ L _ ( a _ 2 )  8 ( 1 - L  -a) ~ ;t*L - ~ j - ~ a - 2 )  

j=o 

l 8L-a2*L ~a-2~ 
•  ( l _ L _ 2 )  2 = 0  (4.3) 

showing that the truncated two-point function in the parallel direction 
decays faster than the perpendicular one. 

We now obtain faster decay than that given by (4.3). Note that the 
sum of the first three terms of (4.2), with 2* replacing 2,~, is given by 

So + &, (  {~.* }) + S2(,Z*) 

L- (n -1 ) (d -  2) 
~,  2 - d  * 2 

- I _ L _ ( a _ 2 ) - ( 1 - L - a ) 8 ) ~  * ~ a,~+j+L 82 a ._  1 
j ~ o  

L u 
L -n(d+2) (4.4) 

1 - L - ( e -  2) 

i.e., the L -n(d-2) and L -"a terms cancel. We can obtain faster falloff 
by estimating the rate of convergence of 2, to 2*. We have, letting 
K, ~ 2~ -~ - 2* - 1, 20 = 2, and R,  = L2"K, - K o, the following result. 
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Lemma 4.1. For 2 and fl large, we have: 

( a )  12__2n I ~c f l~ - l /2Ln(~  U2), for d~>3. 

(b) For dlarge 

2 " - 2 . = L  2"22(Ko+R~)-L 4n23(Ko+Roo)2+O(L (4+e)n) 

where e>0 ,  R~-=lim.~o~ R.,  and IR~[ <cfl ~-1/2. 

Proof. From I we have 

K,, = 221 - 2* - '  = (2* - 2,,)(2,,2")--1 = L-2.Ko + L_2.R. 

where 
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Substituting 2 + ( 2 . - 2 )  for 2. on the right side and iterating, we 
arrive at 

2 *  - 2~ = L 2nKo22 -- L 2nRn2*2 + L - 2 n ( K  o + R . )  2 *  

x [ - L-2"Ko 2.2 - L-2nRn.,~*2 - L2"(Ko + R.)(2. - 2*)] 

= L - 2 n K o 2 * 2  4- L-2"R.2 .2 - L-4n)~*3(K 0 "k Rn)  2 -k O(L 6.) 

Now write R~ = Ro~ + ( R . - R ~ ) ,  so that the above becomes 

2* -- 2 n = L - 2 n 2 * 2 ( K  o q- R ~ )  - L - 4 n 2 * 3 ( K  o -b Roo) 2 n t- O ( L  (4+~)n) 

Now we estimate the falloff by writing A m = 2*+  (Am- 2") in (4.2). Thus 

/~< r r > ~ = So + s1~({2" }) + s2(2") + s iA {2,. - 2* }) 

"k S 2 ( 2 n _ l - 2 * ) - - k  E n (4.5) 

and for all d~> 3, using Lemma 4.1(a), 

[Sxn({~m__~})l ' ]$2(2,,_1__ 2) I <~C[J=-a/2L-~Ed 2+a~] 

n--1 
R n = c ( L )  2 L2JO(~2 1/2) 

j = o  

(a) As fl:~ L j(d 2) 8 implies L-2n IRn[ <~ Cfl~-~/2Ln(d-2)(~-i/2) ' the 
result follows. 

(b) For large d, note that try[ <eft ~-1/2 and [Rn-Ro~r <cL (2+~> 
with e >0. Now, by writing 2* -2 . ,  = L  2nKo2n2* +L-2"Rn2 .2  *, we see 
that [2" - 2~[ ~< L-2"c. 
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with 6~ = 1 / 2 - e  > 0. Combining these estimates with (4.1) and (4.4) gives 

fl@l(X) fbl(y))r<<.cL -nEa-2+6j, d>~3 

Now we consider d large. Using Lemma 4,1(b) in (4.5), we get 

/~(qil(x) ~bl(y) ) r =  So + $1,({2}) + $2(2) - 22(/(o + R~)  

• [S ln ( {L-2m})+S2(L-2(n -1 ) ) ]  

q- J~*3(e  0 q'- Roe) 2 [S ln  ( { L - 4 m } )  -Jr- S2(L -4(n- 1))] 

q- S[n(O(L-n(4+e))) -1- S;(O(L -~"- !)(4 +e))) + En (4.6) 

Now 

Sln({L-2m})  -t-- S2(L -2(n- 1)) = 

Sin ( { L -4m }) --I- S( L2  4(n - 1)) = 

_2LaL ,,(d+ 2) 
+ O(L ,,ca+a)) (4.7) 

2 ( 1 - L  ca+ z)) 

LdL-~d+ 2) "q- O(L -n(d+4)) (4.8) 
2(1 - L -(a+ 2)) 

and the last three terms in (4.6) are bounded by cL -n(a§247 Using (4.1), 
(4.4), (4.7), and (4.8) in (4.6), we obtain, noting that 1 + 2*Ko = 2"/2o, 

<~l(x) ~l(y)> T 

1 LdL -n(a+2) 
- fl 1 - -L -(a+2) [1 + 22"(Ko + Ro~) + 2"2(Ko + R~)  2] 

+ O(L -n(d+z+~)) 

i L~L-~a+2,  (~  )2 O(L-~d+2+~}) 
l_L_~d+2)  2"2 + R ~  + 

5. CONCLUDING REMARKS 

Here we have shown that the decay of the parallel two-point function 
is faster than the perpendicular one in all d~> 3 and Ix-y[-(d+2~ decay for 
large d. We expect Ix-y[-(d+2) decay for all d>~ 3 based on the results of 
I that the shifted action has the noncanonical Gaussian fixed point 42"~b~ 
and Ix-yl-(~+2~ is the decay associated with this fixed point. A calcula- 
tion showing the finiteness of the zero-field susceptibility would indicate at 
least l x - y J  -(a+~), ~ > 0, falloff of the two-point function. One can show 
finiteness for d >  6, but it would take higher-order perturbation calcula- 
tions to reach d~> 3. In addition to the question of decay it would be 
interesting to know the behavior of the model in the critical region. 
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